Expectation Propagation in Gaussian Process Dynamical Systems: Extended Version

نویسندگان

  • Marc Peter Deisenroth
  • Shakir Mohamed
چکیده

Rich and complex time-series data, such as those generated from engineering systems, financial markets, videos or neural recordings, are now a common feature of modern data analysis. Explaining the phenomena underlying these diverse data sets requires flexible and accurate models. In this paper, we promote Gaussian process dynamical systems (GPDS) as a rich model class that is appropriate for such analysis. In particular, we present a message passing algorithm for approximate inference in GPDSs based on expectation propagation. By posing inference as a general message passing problem, we iterate forward-backward smoothing. Thus, we obtain more accurate posterior distributions over latent structures, resulting in improved predictive performance compared to state-of-theart GPDS smoothers, which are special cases of our general message passing algorithm. Hence, we provide a unifying approach within which to contextualize message passing in GPDSs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expectation Propagation in Gaussian Process Dynamical Systems

Rich and complex time-series data, such as those generated from engineering systems, financial markets, videos, or neural recordings are now a common feature of modern data analysis. Explaining the phenomena underlying these diverse data sets requires flexible and accurate models. In this paper, we promote Gaussian process dynamical systems as a rich model class that is appropriate for such an ...

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Spectral learning of linear dynamics from generalised-linear observations with application to neural population data

Latent linear dynamical systems with generalised-linear observation models arise in a variety of applications, for instance when modelling the spiking activity of populations of neurons. Here, we show how spectral learning methods (usually called subspace identification in this context) for linear systems with linear-Gaussian observations can be extended to estimate the parameters of a generali...

متن کامل

Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM

Gaussian process state-space models (GP-SSMs) are a very flexible family of models of nonlinear dynamical systems. They comprise a Bayesian nonparametric representation of the dynamics of the system and additional (hyper-)parameters governing the properties of this nonparametric representation. The Bayesian formalism enables systematic reasoning about the uncertainty in the system dynamics. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012